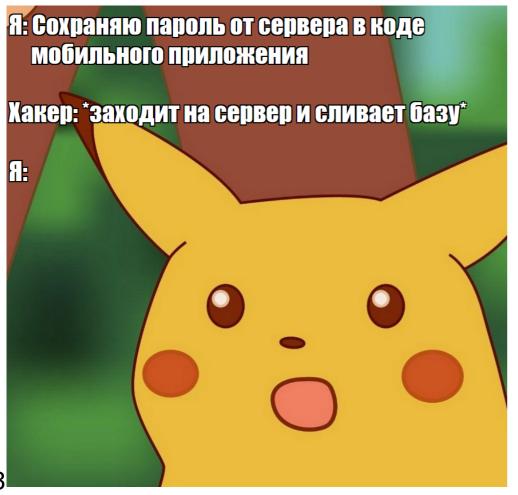
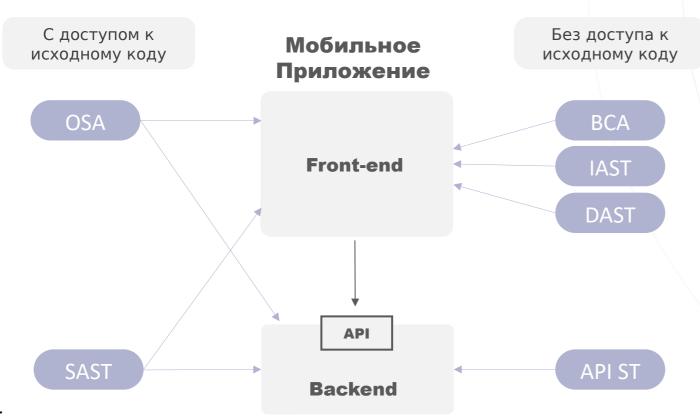


- Что такое мобильное приложение
- Кому нужен MAST
- Как проверить мобильное приложение без доступа к исходному коду
- Интеграция в CI/CD-процессы

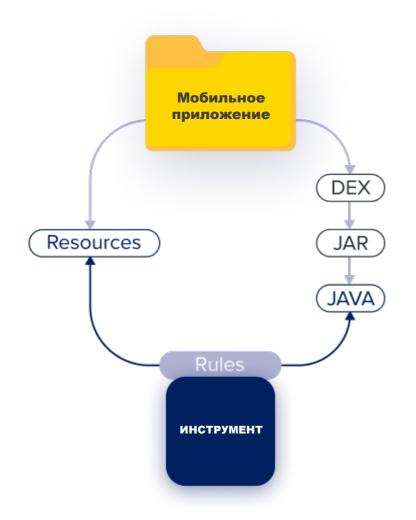
Свидетельство о регистрации в ФИПС: 2020660236 Номер в реестре российского ПО: 7699


Почему уязвимы мобильные приложения?

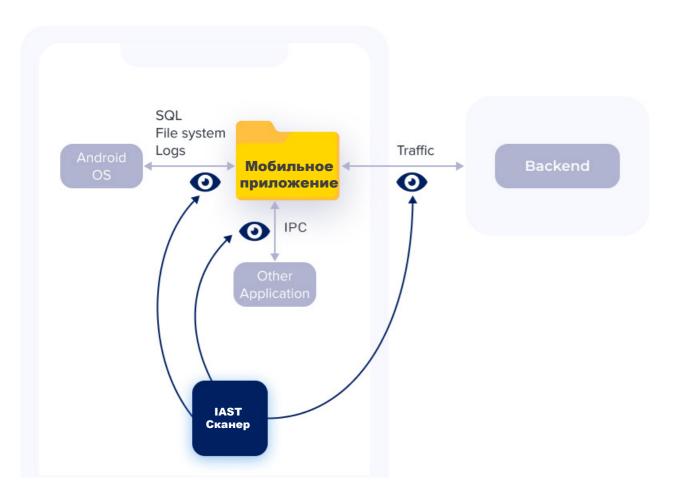
- Устаревшие или непроверенные технологии
- Оишбки в коде
- Халатность при разработке приложений
- Отсутствие контроля со стороны заказчика
- Недостаточные знания разработчиков в области ИБ и отсутствие ответственности аутсорсеров за последствия


Какие последствия?

- Атака на пользователей и администраторов вашего приложения, кража данных, подмена контента и самого приложения, перенаправление на вредоносные вебсайты, списание бонусов и денежных средств, запуск шпионского и вредоносного кода на мобильных устройствах от имени вашего приложения.
- Использование найденных в приложении ключей, сертификатов, паролей, токенов, контактов, адресов для атаки на вашу сеть, хранилища кода, облачную инфраструктуру.
- Продвинутые атаки на ваш API с дополнительной информацией, полученной из мобильного приложения.
- Репутационные потери, падение стоимости акций, всеобщее высмеивание и порицание.

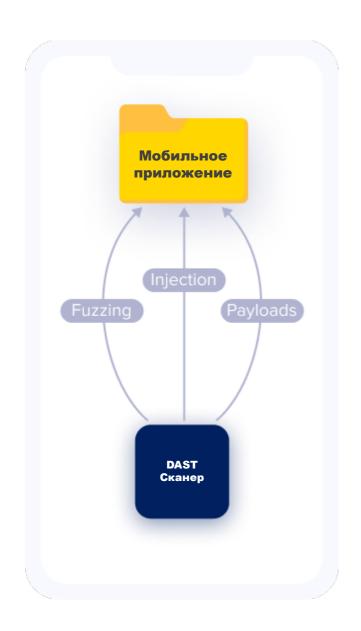


Практики MAST – Mobile Application Security Testing


Все практики MAST можно разделить на две группы:

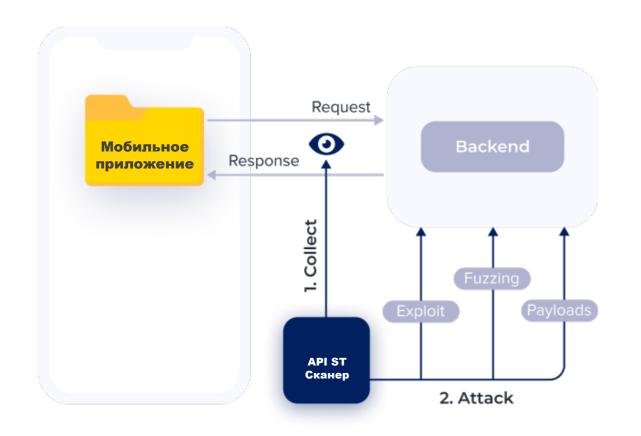
- 1. Когда доступен исходный код.
- 2. Когда нет доступа к исходному коду, а есть только готовое приложение.

BCA – Bytecode Analysis


ВСА полезен для проверки окончательной версии приложения, чтобы убедиться, что она собрана корректно и, как минимум, включает в себя только файлы и конфигурацию, необходимые для работы, в сборке нет никаких лишних файлов и данных.

IAST - Interactive Application Security Testing

Практика IAST построена на основе наблюдения за поведением приложения, как оно взаимодействует с операционной системой, приложениями, вашим API.


Благодаря этому, можно идентифицировать и определить всю конфиденциальную информацию, с которой работает приложение, и понять, как она обрабатывается и хранится.

DAST - Dynamic Application Security Testing

Практика DAST нацелена на поиск уязвимостей, которые могут быть реализованы без root / jailbreak доступа и основаны на специфике используемых в приложении способов взаимодействия со сторонними приложениями.

Другими словами – это эмуляция злоумышленника, который представляет собой приложение, установленное рядом с вашим.

API ST - API Security Testing

Тестирование безопасности API (API ST) применяется для тестирования серверной части мобильных приложений (API).

Можно считать эту практику частью DAST для серверной части, но чтобы не путаться в аббревиатурах, в безопасности мобильных приложений применяется понятие API Security Testing.

Важность динамического анализа

При работе с запущенным приложением можно анализировать его меняющееся состояние, реакции на поступающие данные и накапливающиеся ошибки логики обработки пользовательских действий.

Подтверждение уязвимостей

При помощи динамического анализа можно подтвердить уязвимости, выявленные другими практиками и определить, какие из них на самом деле эксплуатируемые.

Обнаружение уязвимостей

При динамическом анализе выявляются уязвимости, которые невозможно определить другими практиками.

Работа без исходного кода

Динамический анализ работает без необходимости доступа к исходному коду и анализирует поведение работающего приложения на устройстве.

Как это делает Стингрей?

АВТОМАТИЗИРОВАННОЕ ЗАГРУЗКА РЕЗУЛЬТАТЫ ТЕСТИРОВАНИЕ Файл приложения Выявленные уязвимости Адаптация Запись Выполнение APK / IPA Отчет о соответствии тестов тестов тестов Или название приложения для требованиям загрузки из магазинов Данные о работе приложения AppStore, RuStore и Google Play

Автоматизация тестирования

ЗАПИСЬ

Система записывает все действия пользователя и отклик приложения на эти действия, и на основе записи формирует сценарий проверки.

Либо специалист, проверяющий приложение, предоставляет готовый сценарий в формате Appium

ВОСПРОИЗВЕДЕНИЕ

Система воспроизводит записанные автотесты, анализирует, привели ли действия к ожидаемым результатам и, при необходимости, отправляет тесты на адаптацию.

РЕМИРЬЕНИЯ

С помощью методов машинного обучения и интеграции с операционной системой Стингрей производит адаптацию автотеста под изменения элементов интерфейса без перезаписи теста.

Автоматические проверки

Дамп архива приложения

Расшифровка приложения, дамп запущенного приложения из памяти.

Анализ поведения

Activity/Intent для Android. Отслеживание сообщений и взаимодействия с соседними приложениями и сервисами.

Анализ сетевой активности

Перехват HTTP/HTTPs/WebSocket, сбор информации о конечных точках, анализ передаваемых данных.

Анализ систем защиты

Проверка на изменение поведения приложения в зависимости от того, запущено оно на эмуляторе или нет

Анализ файлов, баз данных, системного журнала и дампа памяти приложения

Сбор баз данных, которые используются в приложении (включая зашифрованные базы данных), анализ запросов и ответов.

Анализ файлов, которые использует приложение во время своей работы.

Анализ изменений памяти приложения во время работы.

Анализ записей системного журнала.

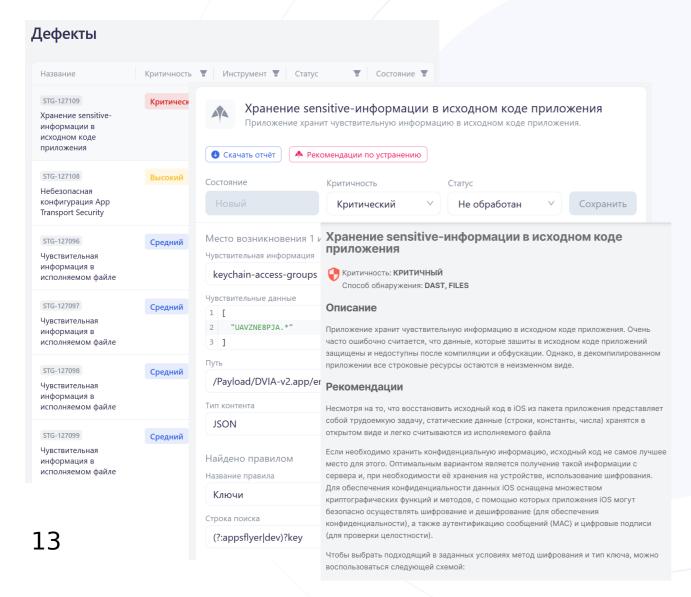
Анализ сборки (SAST)

Декомпиляция исходного кода приложения, проверка на обфускацию, анализ качества конфигурации и сборки.

Поиск чувствительной информации

Поиск ключей, имен пользователей и паролей, сертификатов, токенов, введенных данных.

+ рекурсивный поиск найденной и производной информации по всем источникам данных.


Поиск уязвимостей

Обнаружение уязвимостей, связанных с небезопасным хранением и передачей данных, небезопасной аутентификацией, слабой криптостойкостью.

Анализ поведения приложения на различные входные данные: пользовательский ввод, deep links.

Отчеты о найденных дефектах

Найденные дефекты складываются в удобный список карточек с обозначением уровня критичности, полной информацией о деталях, а также ссылками на собственную базу данных инструкций по устранению.

Каждое сканирование формирует собственный список найденных дефектов, чтобы вы могли сравнить результаты между собой.

Список можно выгрузить в виде PDF-отчета для предоставления аудиторам.

Проверка на соответствие требованиям

Дефекты

Хранение sensitive-информации в общедоступном файле

Приложение хранит чувствительную информацию в общедоступном файле внутри директории приложения.

Хранение приватного ключа/сертификата не защищенного паролем в директории/ресурсах приложения

Приложение хранит приватный ключ/сертификат не защищенный паролем в директории/ресурсах приложения. Такоі подход к хранению ключей и сертификатов может существенно упростить подмену ключевой информации заприльшивающим и маришению церостростить и ролике лаботы, приложения .

Вывод sensitive-информации в системный лог

иложение выводит чувствительную информацию с помощью методов класса Log или System.out/err.

Хранение sensitive-информации в общедоступном файле

Приложение хранит чувствительную информацию в общедоступном файле вне директории приложения.

Хранение ранее найденной чувствительной информации

Приложение хранит чувствительную информацию.

Хранение чувствительной информации в общедоступной незащищённой базе данных

Приложение хранит чувствительную информацию в общедоступной незащищённой базе данных.

Хранение значений Cookies в стандартной базе WebView

Приложение хранит значения cookie в стандартной базе Cookies.db в открытом виде. Такой подход к хранению информации может привести к утечке сессионных идентификаторов и повлечь за собой неправомерный доступ и данным пользователя.

Хранение чувствительной информации в общедоступной защищённой базе данных

Приложение хранит чувствительную информацию в общедоступной защищённой базе данных.

Хранение sensitive-информации в исходном коде приложения

Приложение хранит чувствительную информацию в исходном коде приложения

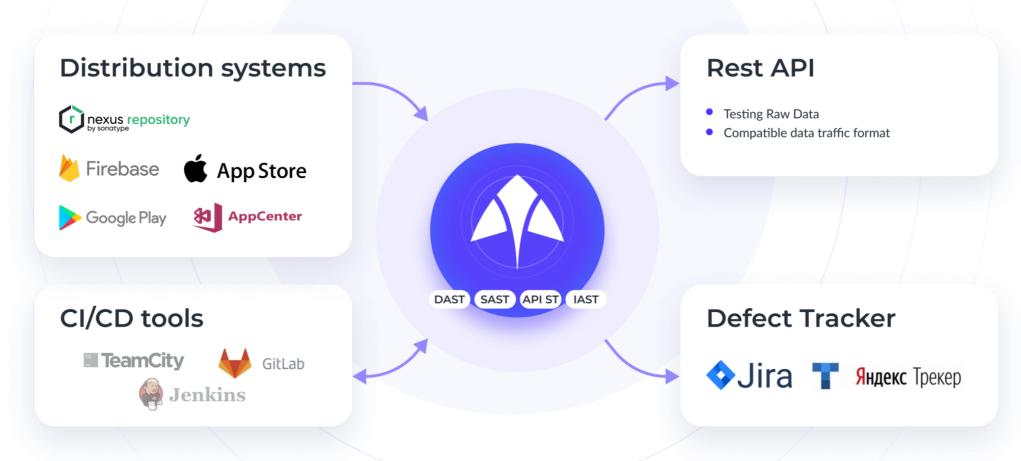
Хранение sensitive-информации в кэше клавиатуры

Sensitive-информация попадает в кэш клавиатуры устройства и может быть доступна в подсказках автодополнени при вводе текста. Найденные дефекты распределяются по пунктам стандартов, чтобы можно было легко проверить, каким стандартам и почему не соответствует ваше приложение:

- MASVS
- OWASP Mobile Top 10
- PCI DSS 4.0
- PCI Software Security Framework
- ОУД4
- ΓOCT-57580

Сканирование на эмуляторах и живых устройствах

Приложения запускаются на ферме из эмуляторов и специально подготовленных устройствах на базе iOS и Android.


Вместе с отчетом и собранными данными предоставляется запись с экрана устройства для анализа поведения UI и отработки всех этапов сценария автоматизированного тестирования.

Установка платформы и проведение сканирований возможны как в облаке Стингрей, так и в сети заказчика.

Интеграции

Стингрей обеспечивает интеграцию со многими инструментами DevOps: CI / CD, дефект-трекерами, системами дистрибуции и другими инструментами

а также возможность проверки публикуемых приложений по расписанию.

Что делать дальше:

Зайдите на сайт продукта и познакомьтесь с деталями

https://stingray-mobile.ru/

Свяжитесь с нами, чтобы запланировать демо/пилот

@MRCRRA

Или пишите на почту: dm@afi-d.ru

> Или звоните: 7 495 223 35 33 8 800 550 52 23