Контакты
Подписка 2024
ITSEC 2024
Форум ITSEC 2024: информационная и кибербезопасность России. Москва, Radisson Blu Belorusskaya. 15-16 октября
Участвуйте!

Исследователи обнаружили более 20 слабых мест в платформах машинного обучения

27/08/24

AI-3

Исследователи в области кибербезопасности предупреждают о значительных рисках, связанных с уязвимостями в цепочке поставок программного обеспечения для машинного обучения (ML). Так, в целом ряде MLOps-платформ недавно было выявлено более 20 уязвимостей, которые могут быть использованы для выполнения произвольного кода или загрузка вредоносных наборов данных, пишет Securitylab.

Платформы MLOps предоставляют возможность проектировать и выполнять конвейеры моделей машинного обучения, храня модели в репозитории для дальнейшего использования в приложениях или предоставления доступа к ним через API. Однако некоторые особенности этих технологий делают их уязвимыми для атак.

Исследователи из JFrog в своём отчёте указывают на наличие уязвимостей, вызванных как основными форматами и процессами, так и ошибками реализации. Например, злоумышленники могут использовать поддержку автоматического выполнения кода при загрузке моделей, таких как файлы Pickle, что открывает новые пути для атак.

Опасность также кроется в использовании популярных сред разработки, таких как JupyterLab, позволяющей выполнять код и выводить результаты в интерактивном режиме. Проблема в том, что результат выполнения кода может включать HTML и JavaScript, которые будут автоматически выполнены браузером, создавая потенциальную уязвимость для атак с использованием межсайтового скриптинга (XSS).

Один из примеров такой уязвимости был обнаружен в MLFlow, где недостаточная фильтрация данных приводит к выполнению клиентского кода в JupyterLab, создавая угрозу для безопасности.

Второй тип уязвимостей связан с недостатками реализации, такими как отсутствие аутентификации на платформах MLOps, что позволяет злоумышленникам с доступом к сети получить возможности выполнения кода, используя функции ML Pipeline. Такие атаки не являются теоретическими — они уже применялись в реальных вредоносных операциях, например, при развёртывании криптовалютных майнеров на уязвимых платформах.

Ещё одна уязвимость касается обхода контейнеров в Seldon Core, что позволяет атакующим выходить за рамки выполнения кода и распространяться внутри облачной среды, получая доступ к моделям и данным других пользователей.

Все эти уязвимости могут быть использованы для проникновения и распространения внутри организации, а также компрометации серверов. Исследователи подчёркивают, что важно обеспечить изоляцию и защиту среды, в которой работают модели, чтобы предотвратить возможность выполнения произвольного кода.

Отчёт JFrog появился вскоре после недавних случаев выявления уязвимостей в других инструментах с открытым исходным кодом, таких как LangChain и Ask Astro, которые могли привести к утечке данных и другим угрозам безопасности.

Темы:Искусственный интеллектУгрозыJFrogJupyter
Безопасная разработка
Форум ITSEC 2024 | 08 октября | Оптимизируем инструментарий для процессов безопасной разработки
Участвуйте и представляйте решения!
Статьи по темеСтатьи по теме

Участвуйте в проектах

редакции журнала
"Информационная безопасность" 

КАЛЕНДАРЬ МЕРОПРИЯТИЙ 2024
ПОСЕТИТЬ МЕРОПРИЯТИЯ
ВЫСТУПИТЬ НА КОНФЕРЕНЦИЯХ
СТАТЬ АВТОРОМ
SOAR, IRP, SOC
Спецпроекты журнала "Информационная безопасность"
Станьте автором издания!

Еще темы...

More...